
Mid Term Exam (MTE) will be held on 6-th of November, at 13:30 contactly in 506 a.
Please participate with your own computers with installed Octave and .m files.
During the MTE you must solve 2 problems:

Diffie-Hellman Key Agreement Protocol - DH KAP.1.
Man-in-the-Middle Attack (MiMA) for Diffie-Hellman Key Agreement Protocol - DH KAP.2.

The problems are presented in the site:
imimsociety.net
In section 'Cryptography':
Cryptography (imimsociety.net)

Please register to the site and after that you receive 10 Eur virtual money to purchase the problems.
For registration you should input the first 2 letters of your Surname and full Name, e.g. John Smith
Should register as Sm John.

Please purchase the only one problem at a time.

If the solution is successful then you are invited to press the green button [Get reward].
No any other declaration about the solution results is required.
If the solution failed, then you must press the button [Return] in the top on the left side.

Then 'Knowledge bank' will pay you the sum twice you have paid.
So, if the initial capital was 10 Eur of virtual money and you buy the problem of 2 Eur, then if the solution is
correct your budget will increase up to 12 Eur.

You can solve the problems in imimsociety as many times as you wish to better prepare for MTE.

I advise you to try at first to solve the problem in 'Intellect' section to exercise the brains.
It is named as 'WOLF, GOAT AND CABBAGE TRANSFER ACROSS THE RIVER ALGORITHM'.
< https://imimsociety.net/en/home/15-wolf-goat-and-cabbage-transfer-across-the-river-algorithm.html>

The questions concerning the MTE you can ask at the end of the lectures.

Principles of Public Key Cryptography

Instead of using single symmetric key shared in advance by the parties for realization of symmetric
cryptography, asymmetric cryptography uses two mathematically related keys named as private key and
public key we denote by PrK and PuK respectively.
PrK is a secret key owned personally by every user of cryptosystem and must be kept secretly. Due to the

`111_006_Schnorr-Id-Sig

 `111_006_Schnorr-Id-Sig+++++ Page 1

https://imimsociety.net/en/
https://imimsociety.net/en/14-cryptography
https://imimsociety.net/en/home/15-wolf-goat-and-cabbage-transfer-across-the-river-algorithm.html

PP = (p, g).
Strong prime number p in real cryptography is of order : p ~ 22048

Strong prime number p in our examples is of order: p ~ 228

>> p=genstrongprime(28)

Key generation

Randomly choose a private key x with 1 < x < p − 1.•

The private key is PrK = x = randi(p-1)
Compute a = g x mod p.

•

PrK is a secret key owned personally by every user of cryptosystem and must be kept secretly. Due to the
great importance of PrK secrecy for information security we labeled it in red color. PuK is a non-secret
personal key and it is known for every user of cryptosystem and therefore we labeled it by green color. The
loss of PrK causes a dramatic consequences comparable with those as losing password or pin code. This
means that cryptographic identity of the user is lost. Then, for example, if user has no copy of PrK he get
no access to his bank account. Moreover his cryptocurrencies are lost forever. If PrK is got into the wrong
hands, e.g. into adversary hands, then it reveals a way to impersonate the user. Since user’s PuK is known
for everybody then adversary knows his key pair (PrK, Puk) and can forge his Digital Signature, decrypt
messages, get access to the data available to the user (bank account or cryptocurrency account) and etc.
Let function relating key pair (PrK, Puk) be F. Then in most cases of our study (if not declared opposite)
this relation is expressed in the following way:

PuK=F(PrK): PrK = x = randi(p-1); PuK = a = g x mod p.

In open cryptography according to Kerchoff principle function F must be known to all users of
cryptosystem while security is achieved by secrecy of cryptographic keys. To be more precise to compute
PuK using function F it must be defined using some parameters named as public parameters we denote by
PP and color in blue that should be defined at the first step of cryptosystem creation. Since we will start
from the cryptosystems based on discrete exponent function then these public parameters are

PP = (p, g).
Notice that relation represents very important cause and consequence relation we name as the direct
relation: when given PrK we compute PuK.
Let us imagine that for given F we can find the inverse relation to compute PrK when PuK is given.
Abstractly this relation can be represented by the inverse function F-1. Then

PrK=F-1(PuK).
In this case the secrecy of PrK is lost with all negative consequences above. To avoid these undesirable
consequences function F must be one-way function – OWF. In this case informally OWF is defined in the
following way:
1. The computation of its direct value PuK when PrK and F in are given is effective.
2. The computation of its inverse value PrK when PuK and F are given is infeasible, meaning that to find
F-1 is infeasible.
The one-wayness of F allow us to relate person with his/her PrK through the PuK. If F is 1-to-1, then the
pair (PrK, Puk) is unique. So PrK could be reckoned as a unique secret parameter associated with certain
person. This person can declare the possession or PrK by sharing his/her PuK as his public parameter
related with PrK and and at the same time not revealing PrK.
So, every user in asymmetric cryptography possesses key pair (PrK, PuK). Therefore, cryptosystems based
on asymmetric cryptography are named as Public Key CryptoSystems (PKCS).
We will consider the same two traditional (canonical) actors in our study, namely Alice and Bob.
Everybody is having the corresponding key pair (PrKA, PuKA) and (PrKB, PuKB) and are exchanging with
their public keys using open communication channel as indicated in figure below.

 `111_006_Schnorr-Id-Sig+++++ Page 2

Randomly choose a private key x with 1 < x < p − 1.

The private key is PrK = x = randi(p-1)
Compute a = g x mod p.

•

The public key is PuK = a = g x mod p.•

Identification.1.

If person can prove that he/she knows PrK corresponding to his/her PuK without revealing any
information about PrK then everybody can trust that he is communicating with person posessing
(PrK, Puk) key pair. This kind of proof is named as Zero Knowledge Proof (ZKP) and plays a
very important role in cryptography. It is very useful to realize Identification, Digital Signatures
and many other cryptographically secure protocols in internet. In many cryptographic protocols,
especially in identification protocols PrK is named as witness and PuK as a statement for PrK.
Every actor is having the corresponding key pair (PrKA, PuKA) and all PuK are exchanged
between the users using open communication channel as indicated in figure below.
Let Bob is sure that PuKA is indeed of Alice and wants to tell Alice that he intends to send her
his photo with chamomile flowers dedicated for Alice. But he wants to be sure that he is
communicating only with Alice itself and with nobody else. He hopes that at first Alice will
prove him that she knows her secret PrKA using ZKP protocol. In general, this protocol is
named as Identification protocol, it is interactive and has 3 communications to exchange the
following data named as commitment, challenge and response.

Asymmetric Encryption - Decryption
c=Enc(PuKA, m) = (ε, δ) =(E, D)
m=Dec(PrKA, c)

Asymmetric Signing - Verification
σ=Sign(PrKA, m) = (r, s)

V=Ver(PuKA, m, σ), V{True, False}  {1, 0}

PrKA = x

PrKA = x

ϭ = (r, s)

PuKA = a

PuKA = a

}r
s

c = (E, D)} {

ε

δ
ε

δ

m
m < pm

m < p

Authenticity Confidentiality

 `111_006_Schnorr-Id-Sig+++++ Page 3

Schnorr Identification: Zero Knowledge Proof - ZKP PP = (p, g).

Schnorr Id is interactive protocol, but not recurent as it is realized to prove the knowledge of mirackle words.
Schnorr Id Scenario: Alice wants to prove Bank that she knows her Private Key - PrKA = x which corresponds
to her Public Key - PuKA= a = g x mod p not revealing PrKA= x.

Correctness:

gres mod p = gi+xh mod(p-1) mod p = gigxh mod p = t(gx)h mod p = tah mod p.

Registration phase: Bank generates PrKA = x and PuKA = a to Alice and hands over this data
in smart card, or in other crypto chip in Alice's smart phone, or in software for Smart ID.

Schnorr Id Scenario: Alice wants to prove Bank that she knows her Private Key - PrKA = x which
corresponds to her Public Key - PuKA= a not revealing PrKA: Zero Knowledge Proof - ZKP
Protocol execution between Alice and Bank has time limit.
Alice's computation resources has a limit --> protocol must be computationally effective.
PrKA=x is called a witness and corresponding PuKA=a=gx mod p is called a statement.
This protocol is initiated by Alice and has the following three communications.

P(x, a) - Prover - Alice V(a) - Verifier - Bank

C:\Users\Eligijus\Documents\REKLAMA

 Schnorr Signature Scheme (S-Sig).

In general, to create a signature on the message of any finite length M parties are using cryptographic
secure H-function (message digest).
In Octave we use H-function

 `111_006_Schnorr-Id-Sig+++++ Page 4

In Octave we use H-function
>> hd28('…') % the input '…' of this function represents a string of symbols between the commas.
 % the output of this function is decimal number having at most 28 bits.

Let M be a message in string format to be signed by Alice and sent to Bob: >> M='Hello Bob'
For signature creation Alice uses public parameters PP=(p, g) and

Alice’s key pair is PrKA=x, PuKA= a = g x mod p.

Alice chooses at random u, 1<u<p-1 and computes first component r of his signature:
r=gu mod p. (2.19)

Alice computes H-function value h and second component s of her signature:
 h=H(M||r), (2.20)

s=u+xh mod (p-1). (2.21)

Alice’s signature on h is =(r, s). Then Alice sends M and  to Bob.

After receiving M' and , Bob according to (2.20) computes h'
 h'=H(M'||r),
and verifies if

gs mod p = rah' mod p. (2.22)
 V1 V2

Symbolically this verification function we denote by

Ver(a,,h')=V{True, False}{1, 0}. (2.23)

This function yields True if (2.22) is valid if: h=h' and PuKA= a =F(PrKA)= gx mod p.

 and: M=M'

Correctness:

gs mod p = gu+xh mod(p-1) mod p = gugxh mod p = r(gx)h mod p = rah mod p.

gs mod p = rah mod p.

 `111_006_Schnorr-Id-Sig+++++ Page 5

>> p= int64(268435019); % p is strong prime
>> g=2;

>> x=int64(randi(p-1))
x = 89089011
>> a=mod_exp(g,x,p)
a = 221828624

>> m='Hello Bob'
m = Hello Bob
>> u=int64(randi(p-1))
u = 228451192
>> r=mod_exp(g,u,p)
r = 33418907
>> cc=concat(m,r)
cc = Hello Bob33418907 % cc is a string
% type variable
>> cc=concat(m,'33418907')
cc = Hello Bob33418907
>> ccc=concat(m,'r')
ccc = Hello Bobr

>> h=hd28(cc)
h = 104824510 104824510

>> s=mod((u+x*h),p-1)
s = 147250342

>> g_s=mod_exp(g,s,p)
g_s = 185672370
V1=g_s;
>> a_h=mod_exp(a,h,p)
a_h = 263774143
>> V2=mod(r*a_h,p)
V2 = 185672370

>> xh=mod(x*h,p-1)
…..
>> s=mod((u+xh),p-1)

>> p= genstrongprime(28)
268435019 p - is strong prime if

p = 2*q + 1, when q - is prime.
Then q = (p-1)/2

>> p= int64(268435019)
p = 268435019
>> isprime(p)
ans = 1
>> q=(p-1)/2
q = 134217509
>> isprime(q)
ans = 1
>>
>> pb=dec2bin(p)
pb =
1111111111111111111001001011

Example of signature realization with Octave

 `111_006_Schnorr-Id-Sig+++++ Page 6

